Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering.

نویسندگان

  • Johan Benesch
  • João F Mano
  • Rui L Reis
چکیده

Many proteins in the inorganic/organic matrix of bone induce or modulate or inhibit mineralization of apatite in vivo. Many attempts have been made to mimic and understand this mechanism as part of bone formation, and ectopic mineralization and control thereof. Many attempts have also been made to use such proteins or protein fragments to harness their potential for improved mineralization. Such proteins and peptide motifs have also been the inspiration for attempts of making mimics of their structures and motifs using chemical or biological synthesis. The aim of this review is to highlight how proteins and (poly)peptides themselves impact mineralization in the human body, and how those could be used and have been used for improving apatite mineralization, for example, on or in materials that by themselves do not induce apatite mineralization but otherwise have interesting properties for use as bone tissue engineering scaffolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 99: Self-Assembling Peptide Scaffolds as New Therapeutic Method in TBI: Focused on Bioactive Motifs

Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...

متن کامل

Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration

Background: Tissue engineering is a developing multidisciplinary and interdisciplinary field involving the use of bioartificial implants for tissue remodeling with the target for repair and enhancing tissue or organ function. Acellular nerve has been used in experimental models as a peripheral nerve substitute. The purpose of the present study was to evaluate the mechanical and histological cha...

متن کامل

Evaluation of mechanical properties and apatite formation of synthesized fluorapatite-hardystonite nanocomposite scaffolds

In this study, mechanical properties and apatite formation ability of synthesized fluorapatite-hardystonite (FA-HT) nanocomposite scaffolds were investigated. Hardystonite (HT; 5 and 10 wt.%) as a reinforcement phase was incorporated into the FA scaffold. FA was mixed with HT for 4 h under argon gas at 220 °C. A space holder method was used for fabricating porous FA-HT scaffolds. Sodium chlorid...

متن کامل

Osteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor

Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...

متن کامل

Electrospun Nanofibers and their Application in Tissue Repair and Engineering

Introduction: Tissue engineering is the repair and replacement of damaged tissues and requires a combination of cells, growth factor and porous scaffolds. Scaffolds, as one of the main components in tissue engineering, are used as a template for tissue regeneration and induction and guidance of growth of the new and biologically active tissues. An ideal scaffold in tissue engineering, imitating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part B, Reviews

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2008